
CS6200
Information Retrieval

Jesse Anderton
College of Computer and Information Science

Northeastern University

Query Process

Review: Ranking
• Ranking is the process of selecting which documents to show the user, and in

what order

• Rankers are generally developed with a certain retrieval model in mind. The
retrieval model provides base-line assumptions about what relevance means:

➡ Boolean Retrieval models assume a document is entirely relevant or non-
relevant, and compose queries using set operations (AND, OR, NOT, XOR,
NOR, XNOR).

➡ Vector Space Models treat a document or a query as a vector of weights for
each vocabulary word, and find document vectors that best match the query’s
vector.

➡ Language Models construct probabilistic models that could generate the text
of a query or document, and compare the likelihood that a document and
query were generated by the same model.

➡ Learning to Rank trains a machine learning algorithm to predict the relevance
score for a document based on some fixed set of document features.

Review: Vector Space Models
• Vector Space Models treat a document or a query as a vector of weights for each

vocabulary word, and find document vectors that best match the query’s vector.

• These models consider each term independently of the others, and so do not consider
information about noun phrases (“White House”) or other important linguistic constructs.

• The main differences between vector space models are in the particular term weights
and similarity functions used.

• The term weight should generally be larger when the term contributes more to the theme
of the document.

➡ TF-IDF is a heuristic which combines document importance with corpus importance.

➡ BM25 is a Bayesian formalization of TF-IDF which also considers document length.

• The similarity function should be larger for documents that better satisfy a query’s
(hidden) information need.

➡ Cosine Similarity compares the angles of the vectors while ignoring their
magnitude. Matching many high-weight terms leads to a better score.

Language Models

Language Models | Topic Models | Relevance Models
Combining Evidence | Learning to Rank

Language Models
• Language Models construct probabilistic models that could generate the text of

a query or document, and compare the likelihood that a document and query
were generated by the same model.

• These models can handle more complicated linguistic properties, but often take
a lot of data and time to train. Often, some training must happen at query time.

• A language model is a function which assigns a probability to a block of text. In
IR, you can think of this as the probability that a document is relevant to a query.

➡ Unigram Language Models estimate the probability of a single word (a
“unigram”) appearing in a (relevant) document.

➡ N-gram Language Models assign probabilities to sequences of n words,
and so can model phrases. The probability of observing a word depends on
the words that came before it.

➡ Other language models can model different linguistic properties, such as
parts of speech, topics, misspellings, etc.

Language Models in IR
• There are three common techniques for retrieval with language

models:

1. Fit a model to the query and estimate document likelihood:

!

2. Fit a model to the document and estimate query likelihood:

!

3. Jointly model query and document:

!

• You can also model topical relevance, as we will discuss later

Ranking by Query Likelihood
• Rank documents based on the likelihood that the model

which produced the document could also generate the
query.

• Our real goal is to rank by some estimate of

• To find that, we can apply Bayes’ Rule and get:

!

• If we assume the prior is uniform (all documents equally
likely) and use a unigram model, we get:

Estimating Probabilities
• The obvious estimate for term probability is the maximum

likelihood estimate:

!

• This maximizes the probability of the document by
assigning probability to its terms in proportion to their
actual occurrence.

• The catch: if for any query term, then

!

• This takes us back to Boolean Retrieval: missing one term
is the same as missing all the terms.

Smoothing our Estimates
• We imagine our document is a sample drawn from a particular

language model, and does not perfectly characterize the full
sample space.

• Words missing from the document should not have zero probability,
and estimates for words found in the document are probably a bit
too high.

• Smoothing is a process which takes some excess probability from
observed words and assigns it to unobserved words.

➡ The probability distribution becomes “smoother” – less “spiky.”

➡ There are many different smoothing techniques.

➡ Note that this reduces the likelihood of the observed documents.

Generalized Smoothing
• Most smoothing techniques can be expressed as a

linear combination of estimates from the corpus c
and from a particular document d:

!

• Different smoothing techniques come from different
ways of finding the parameter .

Jelinek-Mercer Smoothing
• In Jelinek-Mercer Smoothing, we set to some constant,

!

• This makes our model probability:

!

• A document’s ranking score is:

!

This is close to TF-IDF!

This ranking score is proportional to TF and inversely proportional to DF.

Dirichlet Smoothing
• In Dirichlet Smoothing, we set based on document

length:

!

• This makes our model probability:

!

• A document’s ranking score is:

!

Dirichlet Smoothing Example
• Consider the query “president lincoln.”

• Suppose that, for some document:

!

!

!

• Number of terms in the corpus is based on 2000 terms
per document, on average, times 500,000 documents.

Dirichlet Smoothing Example

Dirichlet Smoothing Example

Frequency of
“president”!

Frequency of
“lincoln” QL Score

15 25 -10.53

15 1 -13.75

15 0 -19.05

1 25 -12.99

0 25 -14.40

Topic Models

Language Models | Topic Models | Relevance Models
Combining Evidence | Learning to Rank

Topic Models
• A topic can be represented as a language model.

➡ The probability of observing a word depends on
the topic being discussed.

➡ Words more strongly associated with a topic will
have higher model probabilities.

• A topic model is commonly a multinomial distribution
over the vocabulary, conditioned on the topic.

➡ Often works well, but can’t (easily) handle ngrams.

Topic Models
• Interpreting topic models

➡ Improved representation of documents: a document is a collection
of topics rather than of words

➡ Improved smoothing: a document becomes relevant to all words
related to its topics, whether they appear in the document or not

• Approaches to modeling (latent) topics

➡ Latent Semantic Indexing (LSI) – heuristic, based on decomposition
of document term matrix

➡ Probabilistic Latent Semantic Indexing (pLSI) – a probabilistic,
generative model based on LSI

➡ Latent Dirichlet Allocation (LDA) – an extension of pLSI which adds
a Dirichlet prior to a document’s topic distribution

Goals of Topic Modeling

Topic models are applied to manage the following
linguistic behaviors:

Text Reuse

Topical Similarity

Parallel Bitext
Genehmigung des Protokolls
Das Protokoll der Sitzung vom
Donnerstag, den 28. März 1996
wurde verteilt.
Gibt es Einwände?
Die Punkte 3 und 4 widersprechen
sich jetzt, obwohl es bei der
Abstimmung anders aussah.
Das muß ich erst einmal klären, Frau
Oomen-Ruijten.

Approval of the minutes
The minutes of the sitting of
Thursday, 28 March 1996 have been
distributed.
Are there any comments?
Points 3 and 4 now contradict one
another whereas the voting showed
otherwise.
I will have to look into that, Mrs
Oomen-Ruijten.

Koehn (2005): European Parliament corpus

Multilingual Topic Similarity

How do we represent topics?
• Bag of words? Ngrams?

➡ Problem: there is a lot of vocabulary mismatch for
a topic within a language (jobless vs.
unemployed)

➡ The problem is even worse between languages.
Do we need to translate everything to English
first?

• Topic modeling represents documents as
probability distributions over hidden (“latent”)
topics.

Modeling Text with Topics
• Most modern topic models extend Latent Dirichlet Allocation (Blei,

Ng, Jordan 2003)

• The corpus is presumed to contain T topics

• Each topic is a probability distribution over the entire vocabulary

• For D documents, each with ND words:

Τ

D

N

β Priorz wθPrior

80% economy
20% pres. elect. economy “jobs”

Topics →

1 2 3 4 5 6 7 8

Griffiths et
al.

Top Words By Topic

Topics →

1 2 3 4 5 6 7 8

Griffiths et
al.

Top Words By Topic

LDA
A document is modeled as being generated from a mixture of topics:

LDA
• Gives language model probabilities

!

• Can be used to smooth the document representation
by mixing them with the query likelihood probability, as
follows:

LDA
• If the LDA probabilities are used directly as the

document representation, the effectiveness will be
significantly reduced because the features are too
smoothed

➡ In a typical TREC experiment, only 400 topics are
used for the entire collection

➡ Generating LDA topics and fitting them to
documents is expensive

• However, when used for smoothing the ranking
effectiveness is improved

LDA Example
• If the LDA probabilities are used directly as the

document representation, the effectiveness will be
significantly reduced because the features are too
smoothed

➡ In a typical TREC experiment, only 400 topics are
used for the entire collection

➡ Generating LDA topics and fitting them to
documents is expensive

• However, when used for smoothing the ranking
effectiveness is improved

LDA Example
Top words from 4 LDA topics from a TREC news corpus:

Relevance Models

Language Models | Topic Models | Relevance Models
Combining Evidence | Learning to Rank

Relevance Models
• A relevance model is a language model representing

the user’s information need

➡ The query and the relevant documents are
considered samples from this model

• The probability of generating the text in a document
given a relevance model is denoted

➡ This is a document likelihood model

➡ Less effective than query likelihood due to difficulties
comparing across documents of different lengths

Pseudo-Relevance Feedback
• Fit a relevance model to a query and the top-ranked

documents

• Then rank documents by the similarity between their
document models and the relevance model

• The two models can be compared using Kullback-
Leibler divergence (KL-divergence), an information
theoretic measure which gives the difference between
two probability distributions

KL-Divergence
• Given a true probability distribution P, how close is some

approximation Q of that distribution?

!

➡ This is not symmetric!

• For pseudo-relevance feedback:

➡ P is the relevance model R

➡ Q is the document’s distribution

➡ We rank documents by their (negative) KL-divergence

KL-Divergence
• If we use a maximum likelihood unigram language

model for the relevance model, the ranking score is:

!

!

• This is rank-equivalent to the query likelihood score.

• The query likelihood model is a special case of
retrieval based on a relevance model.

Estimating the Relevance Model
• The probability of pulling word w out of the “bucket”

representing the relevance model depends on the n
query words we have just pulled out:

!

• By definition,

Estimating the Relevance Model
• The joint probability is:

!

• If we assume:

!

• That gives:

Interpreting the Relevance Model
• is usually assumed to be uniform

• is a weighted average of the language
model probabilities for w in a set of documents

➡ The weights are the query likelihood scores for those
documents

• This gives a formal model for pseudo-relevance feedback

• This also gives a query expansion technique

Pseudo-Feedback Algorithm

Example from 10 Docs

Example from Top 50 Docs

Combining Evidence

Language Models | Topic Models | Relevance Models
Combining Evidence | Learning to Rank

Combining Evidence
• No single ranking score has been found which produces

satisfactory performance for all queries.

• Effective retrieval requires combining many pieces of evidence
about a document’s potential relevance.

➡ We have focused so far on simple word-based evidence

➡ There are many other types: document structure, PageRank,
metadata, even scores from multiple relevance models

• An inference network is one approach for combining this
evidence, based on Bayesian networks (aka Bayes Nets)

Inference Network

Inference Network
• A document node (D) represents the random event that a

document is observed

• Representation nodes (ri) are document features (evidence)

➡ The probabilities associated with those features are based
on language models θ estimated using parameters μ

➡ We train one language model for each significant document
feature/structure

➡ The ri nodes can represent proximity features or other types
of evidence (e.g. date)

Inference Network
• Query nodes (qi) are used to combine evidence from

representation nodes and other query nodes.

➡ They represent the occurrence of more complex
evidence and document features.

➡ A number of combination operators are available.

• The information need node (I) is a special query node that
combines all of the evidence from the other query nodes.

➡ The network computes

a and b are parent nodes for q

Example: AND Combination

Example: AND Combination
• Combination operators must compute all possible

states of all their parents.

• Some combinations can be computed efficiently.

Inference Network Operators

Web Search
• The most important, but not the only, search application

• Has major differences as compared with research applications, such
as TREC news:

➡ Collection size

➡ Connections between documents

➡ Range of document types

➡ The importance of spam

➡ Query volume

➡ Range of query types

Search Taxonomy
• Informational Queries

➡ Finding information about some topic which may be found on one or
more web pages

➡ Topical search

• Navigational (“Page Finding”) Queries

➡ Finding a particular web page that the user has either seen before,
or assumes to exist

• Transactional (“e-commerce”) Queries

➡ Finding a site where a task such as shopping or downloading music
can be performed

Web Search
• For effective navigational and transactional search, need

to combine features that reflect user relevance.

• Commercial web search engines combine evidence from
hundreds of features to generate a ranking score for each
web page.

➡ Page content, page metadata, anchor text, links (e.g.
PageRank), and user behavior (click logs)

➡ Page metadata – e.g. “age,” how often it is updated,
the URL of the page, the domain name of its site, and
the amount of text content

Search Engine Optimization
• SEO: Understanding the relative importance of the

many features used in search and how they can be
manipulated to obtain better search rankings for a web
page

➡ e.g., improve the text used in the title tag, improve
the text in heading tags, make sure that the domain
name and URL contain important keywords, and try
to improve the anchor text and link structure

➡ Some of these techniques are regarded as not
appropriate by search engine companies

Web Search
• In TREC evaluations, the most effective features for

navigational search are:

➡ Text in the title, body, and heading (h1, h2, h3, and h4), the
anchor text of all links pointing to the document, the
PageRank number, and the in-link count

• Given the size of Web, many pages will contain all query
terms

➡ Ranking algorithms focus on discriminating between these
pages

➡ Word proximity is important

Term Proximity
• Many models have been developed

• N-grams are commonly used in commercial web
search

• Dependence model based on inference net has been
effective in TREC - e.g.

Example Web Query

Learning to Rank

Language Models | Topic Models | Relevance Models
Combining Evidence | Learning to Rank

Machine Learning and IR
• Considerable interaction between these fields

➡ Rocchio algorithm (60s) is a simple learning approach

➡ 80s, 90s: learning ranking algorithms based on user
feedback

➡ 2000s: text categorization

• Limited mainly by the amount of training data

• Web query logs have generated new wave of research

➡ e.g., “Learning to Rank”

Generative vs. Discriminative
• All of the probabilistic retrieval models presented so

far fall into the category of generative models

➡ A generative model assumes that documents were
generated from some underlying model (in this case,
usually a multinomial distribution) and uses training
data to estimate the parameters of the model

➡ The probability of belonging to a class (i.e. the
relevant documents for a query) is then estimated
using Bayes’ Rule and the document model

Generative vs. Discriminative
• A discriminative model estimates the probability of

belonging to a class directly from the observed
features of the document based on the training data

• Generative models perform well with low numbers of
training examples

• Discriminative models usually have the advantage
given enough training data

➡ Can also easily incorporate many features

Discriminative Models for IR
• Discriminative models can be trained using explicit

relevance judgments or click data in query logs

• There is a large class of algorithms called learning to
rank

➡ Learns weights on a linear (or non-linear)
combination of features that is used to rank
documents

➡ Finds the best weights to optimize some chosen
performance metric

Ranking SVM
• The training data is:

!

➡ ri is partial rank information: If document da should be
ranked higher than db, then

➡ This partial rank information generally comes from relevance
judgments (allows multiple levels of relevance) or click data

➡ If d1, d2 and d3 are the documents in the first, second and
third rank of the search output, but only d3 was clicked: →
(d3, d1) and (d3, d2) will be in the desired ranking for this
query

Ranking SVM
• Learning a linear ranking function

➡ w is a weight vector that is adjusted by learning

➡ da is the vector representation of the features of a
document

➡ non-linear functions are also used

• Weights represent the relative importance of features

➡ These are learned using training data

➡ e.g.,

Ranking SVM
• The goal is to learn weights that satisfy as many of the

following conditions as possible:

!

!

• This can be formulated as an optimization problem,
and a standard optimization tool can solve it.

Ranking SVM

• ξ, known as a slack variable, allows for
misclassification of difficult or noisy training examples,
and C is a parameter that is used to prevent overfitting

Ranking SVM
• Software is available to do optimization

• Each pair of documents in our training data can be represented by the
vector:

!

• The score for this pair is:

!

• A SVM classifier will find a w that makes the smallest score as large as
possible

➡ Makes the differences in scores as large as possible for the pairs of
documents that are hardest to rank

Summary
• The best retrieval model depends on the application and

the data available

• An evaluation corpus (or test collection), training data, and
user data are all critical resources

• Open source search engines can be used to find effective
ranking algorithms

➡ The Galago query language makes this particularly easy

• Language resources (e.g., a thesaurus) can make a big
difference

